PROCEEDINGS

OF THE

FOURTH SEMINAR

ON THE
DOD COMPUTER SECURITY
INITIATIVE

NATIONAL BUREAU OF STANDARDS
GAITHERSBURG, MARYLAND

AUGUST 10 - 12, 1981

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

DAVID L. GOLBER
SYSTEM DEVELOPMENT CORPORATION

THE SDC COMMUNICATIONS KERNEL

The SDC communications kernel is intended to _support secure
communications applications, such as secure front ends ang
terminal access systems, It is a minimal operating systen,
capability=based, and nas & basic structure that we hope
will ease the probliem of formal specification and
verification, (11}

The kernel is oriented towards support of communications
systems in that it offers extensive facilities for
interprocess communications, Because of its restricted aim,
it does not support dynamic changes, such as creation of
processes,

The SDC communications Kernel has been operational for a
number of years in an ARPAMET=~like DoD system. Wwe feel that
the capabilities and speed of the kernel are wellw=adapted to
such a system, and are competitive with other systems not
using a kernelized architecture,

The kernel was developed under the primary direction of Dr.
Richard “andell, The design and coding were done by Karil
Averbach, David Clemans, and Jay Eaglstun.

1.0 In General

The SDBC communications kernel is a descendant of the UCLA
Data=Secure Unix {21 operating system, The sSDC
communications kernel remains similiar to the UCLA kernel in
the following major areas:

a, The SDC kernel is a minimalized operating system.
It is a small amount of code which exists to
previde environment and services to processes, The
processes mav pe Tegarded as Yapplication" code:
there is no partitioning of tne kernel itself into
processes, The kernel 1is the only code in the
machine which accesses hardware features ¢f the
machine such as memory protection registers, device
registers, etc. In a POP 11770, the Kernel

{11 The gquestion of verification is discussed at

the end 0f section 2.

[2] "Unix" is a trademark of Bell Laboratories.

The SDC Communications Kernel August 1981

consists of exactly that c¢ode which runs in
hardware “kernel" mode, the privileged mode of the
machine. Processes Tun in non+-kernel hardware
mode »

pe The SDC communications kernel is intended to be a
veriftiable operating system, That is, it should be
possible to formally state the services andg
protections that it supplies and to formally prove
that it does what it is intended to 4o and n¢ more,

¢c., It is generally felt that operating system code
which 1s interruptable {s very hard to verifvy.
Therefore 1t 1s preferrable for a verifiable
pperating system to run with interrupts completely
locked out. This 1s the policy in the case 0f the
3DC communications kernel,

d. The 5DC commpunications kernel is a capability~based
operating system, That 1is, it keeps track of
processes’ allowed accesses to various objects by
maintaining for each process an array of data
structures called capabilities, each of which
describes an object and an allowed access to that
ovject, .

€. The kKernel is entered for one of two reasonss

An interrupt is received from a device. This
can only occur while a process is running. ar

A Kernel call (reguest £or some kernel action)
is made by some pProcess.

In either case, the kernel code is entered via a
trap or interrupt while a process is running, runs
straight through without interruption and then
exits. The kernel exits by causing the resumption
of the execution of the code of some process (which
may or may not be the process which was running
when the kernel was entered),

On the other hand, the SDC communications kernel has been
modified so as to be appropriate for a communications
environment rather than for a general useresupport
environment, For this and pother reasons, the SDC
commynications kernel differs from the UCLA Kkernel 1in a
number of Important ways:

a., 7The S8SDC communications kernel does not provide for
the dynamic c¢reation or destruction ¢of processes,

The SDC Communications Kernel August 1981

De

d.

All processes exist f£rom the time that the CPU is
pooted until it is halted.

.The SDC communications kernel does not provide for

swapping of processes in and out of memory. All
processes are permanently reslident in memorv.

The JCLA system runs on a CPU (11/70, 11/45, etc)
with three hardware modes: Kernel, supervisor and
user, The kernel runs in kernel mode, while the
supervisor mode contains code called the "unix
emulator® which provides an environment very 1like
that of standard Unix to "application" code running
in user mode. In distinction, ‘“application" code
written for the SDC system runs in supervisor mode
and makes kernel calls directly. (User mode 1is
ynused,) SDC software thus can run in CPUs witn
cnly two hardware modes (11/34 and 11/23), (This
is perhaps more a difference in usage than in the
kernels themselves, The SDC communicatiors kernel
on an 11770 or 11/4% could support some sort of
emylator in supervisor mode, which could in turn
provide some sort of standard envirconment to code
in user mode,)

The SDC communications kernel incorporates very
extensive provisions for interprocess
communications.

In the UCLA system, a "Scheduler" process {is
responsible for choosing the next process to run.
in the SDC kernel, processes are not swapped out,
s0 scheduling is much simplified and has peen made
part of the kernel,

In the UCLA system, a "File Manager" process is
responsible for giving capavilities to processes.
In the SDC system, most capabilities of processes
(for instance, the capability to access a certain
peripheral) are assigned statically at the time the
system is configured, by & program called the
*Superlinker®", running under normal Unix, The
Superlinker assembles the CPU memory image and
gives static capablilities to processes as
instructed by the "superlilnker control f£lle", which
is prepared by a human beling, It is this human
being who is ultimately resoonsible for deciding
what processes are allowed to <c¢ommunicate, etc,
{Some capabilites are given to and taken away fron
a process dynamically as part of the interprocess
communication facilitiesy this is discussed in more

P-3

The SDC Communications Kernel Aaqust 1981

detail below,) A separate File Manager process is
not used,

The SDC communications kernel is written in & version of
Pascal, augmented to provide certain extensions necessary
for the use of Pascal in an operating systen, The UCLA
Pascal=C translator translates this into C, which is then
compiled normally. The c¢ode 1is written in & top=down,
highly modular and methodical method, which is intended to
facilitate verification, altnougn no verification or formal
specification has been done as vet,

2.0 Security Bolicy ... 40 Exaople

The SDC kernel does not itself implement a security policy.
In a typical communications system using the kernel, the
total security policy would be a2 result of the properties of
various parts of the system, of wnhich the kernel iIs only one
part., The kernel by itself does not guarantee that the
security policy 1is correctly implemented, The kernel is
only responsible for maintaining and separating process
environments, and providing and regulating Interprocess
communications. Thus, the properties of the KkKernel are
related to the total security policy as a lemma is to a
theoren,

An example may help to make this clear,

Consider a CPU which 1is to act as 3 sort of terminal
concentrator, The CPU {s to support two terminals, one of
which is to carry unclassified traffic onlyv, and the other
of which is to carry classified tratfic only. The TCP and
TELNET protocols are to be used to provide services to each
of these terminals. In order to provide separation between
the classified and unclassified traffic, the TCP and TELNET
processes are duplicated. The internal situation in the CPU
can be pictured as followed:

The SDC Communications Kernel

- T WS W SR A WS A SR N SR

{ Unclassified |

| Terminal I,

August 1981

LA R L E A K & % & X 2 £ £ 2 ¥ %9

{ Classitied |

" Terminal §

LR X 2 & X X 2 L .2 2 3 % X X 3 TN

-~

I

i
]

- |
t {

WU A NG W O W A O W S W W T W A A U O T R A W U N T O W AR O W B O A G W W e O YR W e N

I
i
i
|
|
I
i
|
i
|
|
i
i
!
|
{
i
}
|
|
|
l
|
i
|
|
i
|
I
!
|
I
|
|
|
|
!
t

v

H v

S W R D W S W G W W R W W G W W WS D G W WY W R WS T R W R A WA

I
i
1
i

Line Driver

{(Part ot the kernel)

i
i
|
i

LA R B X F 2 2 T B 2 R 2 X X F 2 2 F 3 J T R0 - R R ETE W e,

{

L2 2 2 X 2 ¥ ¥ L 2 2 3 & X 2 ¥

|
v

i Unclassified | § C
i TELNET

! (A process)

LA A X 4 L 2 B B T 2 3 L 2 X &]

~

|

l Unclassified | |

v

| cP

{ (A process) | H

-

i
|
i
t
i

i
{
i
i

i i
i 1

| |

i R R g L K L A AL X K 2 X 2

-3 § Security i

i MUX/DEMUX §
} (A process) i

-~ |

§ v
i wnet Driver i
i (Part of the) |
{ (kKernel) i

LA Al 2 B 2 L 2 3 B 2 2 X X 2 ¥ 3

‘ .2
i
I

Vv i
To het

P-5

- {
| v

X L T T L X 2 2% 2 X ¥ P9

lassified |

TELNET i
(A process) i

- i
{ v

Cilassified |}

TCP 1

(A process) |

X R 2 L ¥ 4 L 2 T T N ¥ ¥ ¥ P

L L E 2 B X £ L 5 £ 8 2 2 L 2 .2 £ & 5 0 L 0 2 & A 4 & X T F T 2 L F T 3 % T F T R T J JEIEITR YR TP Rep i e S e RS ey

i
|
|
t
i
1
i
|
|
|
1
i
i
|
|
§
!
|
{
I
|
|
|
!
i
i
{
|
i
i
i
i
|
I
i
i
|
|

The SDC Cowmmunications Kernel Aygust 1981

In this figure, the "drivers® are collections of
subroutines; they are within the kernel, since they must
manipulate the pnysical device regilisters,

The Security MUX/DERIX process is a process whose
responsibility it is to separate classiftied and unclassified
traffic streams (on reception) and to merge tne streams on
transmission. We do not speculate here on what kasis this
is done. But it is clear tnat this process is performing a
highly security-relevant function., Therefore, the code of
this process must be appropriately verified, However, it is
important to point out that the veritication of the
functioning of this process 1s quite distinect from the
verification of the kernel. 7The process is not part of the
kernel.

The TELANET and TCP processes are likewise processes, not
part of the kernel. Because of the scheme diagrammed above,
we c¢an hope to be able to show that tne malfunctioning of
any of these processes would not be able to vioclate security
constraints. (Note that this diagram represents only one
exanple of a system which might be build on the Kernel.)

Note that the drivers handle unseparated datay therefore
they too would need to be verified, However, this is true
even before we make the observation that they handle
unseparated data: They must be verified because they are
part of the kernel, and all of the kernel must be verified.

Now we are in a position to discuss the role of the kernel
itself. what are the services and protections that the
kernel provides?

First of all, the kernel rrovides and separates the
environments ot the processes. For examnple, the Kernel sets
the machine mapping registers when one process runs so that
the c¢ode and data of that process are accessed, and so that
the code and data of some other process are pal accessed,

Second of all, the kernel provides interprocess
communications facilities &3 specified when the system is
configured, In the figure avove, for example, the various
ArTOWS represent interprocess communications mechanisms
called "queues", (These will be discussed in more detail

below.)

shen the system wWas configured, the responsible person
specifies what processes are to exist, and what
communications paths between them are to exist,

The tool by which this Is done is the "superlinker”

P-6

The SDC Communications Kernel Augqust 1941

mentioned abvove, The responsinle person oprepares a
"superlinker control tile”, For instance, for the system
pictured apove, the superlinker control file will specity
that there are to be five processes, Each of these
processes has previously been compiled, and its object code
is ready and waiting. The control file specifies where this
opject code {is to be found. Furthermore, the control file
specifies exactly what gueues are to exist in the system,
what processes are allowed to place information on a given
queue, and what processes are to be allowed to take
information off of a given gueue,

This superlinker <control file is processed by the
superlinker progranm, which 1is running under whatever
development system is in use., (3ot under the kernel.,) The
superlinker prepares the complete memory image of the CPU.
In particular, it prepares the kernel tables which establish
the existence of the various queues and what processes are
allowed to engueue to and degueue from each one of them,
(This will be discussed in more detail below.)

Now we can describe what it is that the kernel is trusted to
do: the Kkernel 1is trusted to correctly implement and
administer the system described by the superlinker control
file. For example, if the superlinker control file
describes the system shown in the figure above, then
verification of the kernel will ensure that the unclassified
TELNET process will not be able to degueue information from
the gueue which is shown as leading from the classified TICP
to the classified TELNET.

In order to correctly understand the nature of the security-
policy of the kernel as shown in the example above, it is
very important to understand: The MUX/DEMUX process may be
described as "trusted" In that it is trusted by the human
beings who design, configure and yse the system. However,
it 1is inappropriate to describec this process as "trusteg"
by the Kernel, The kernel does not nave a notion of
"trusted® process. In particular, there is no "trusted®
poolean in the pere=process table maintained by the Kkernel.
The kernel Knows only what communications paths each process
nas been authorized to use,

In the example, the queue £rom the net driver to the
MUX/DEMUX process carries both classified and unclassified
information, while the queuve from the unclassified TCP to
the unclasslitied TELNET carries only unclassified
information. Thus, from a security point of view, these
queues are very different, However, there is nothing in the
kernel corresponding to this difference in the nature of
these queuyes,

P-7

The SDC Communications Kernel Augqust 1981

we can describe the philosophy here as this:t the "real®
security policy 1s executed by the person who prepares the
superlinker control file. The kernel is responsible only
for seeing that that person’s descisions are enforced. Note
that this is appropriate for the purpose for which the &DC
kernel has peen designed. That 1is, since the system is
static, there is no need to burden the kernel with code,
algorithms, etc, for making security-related descisions.
Instead, these descisions are made beforehand, and the
kernel is only responsible for enforcing them,

Note that in the example, the Line Driver software in the
kernel handles both terminals,: There 1is no reason to
provide two coples of this software; both copies would have
to reside in the kernel, so as to access the hardware device
registers, and would have be verified to function ©properly,
as is true for any part of the kKernel and the Kernel as a
whole. There would be no hardware separation between the
two copies.

Note that as part of its functicning, the driver must take
data from the gqueue from the unclassifiesd TELNET process,
and place it on the 1line to the -unclassified terminal.
similarly for the classified terminal and for the other
direction of flow. It must be verified that this function
is performed correctly; but this is covered by the
reaguirement that all the kernel functioning must be verified
to perform correctiv.

If the kernel were to be verified, what 1s it that would be
verified? wnat would be the formal properties that would
have to be verified to hold?

The kernel 1s responsible for
a, Mmaintaining and separating process environments,

b, Providing and regulating interprocess
communications.

¢. Operating devices,

verification of the kernel would require formally stating
the nature of these responsibilites, {These statements
would probably include formal statements of the effects of
the various Kkernel «calls,) Then it would be necessary to
formally prove that the kernel code.does properly carry oaut
these responsiblites,

As already emphasized, verification of the kKernel would be

P-38

The SDC Communications Kernel Auygust 1981

cnly part of what would have to be done to verify that a
given system satisfles some security volicy. various nonw
kernel parts of the system, as well as various aspects of
the total system architecture, would also have to bpe
veritied.

Certain parts of the support software used to Pproduce the
system would also have to be appropriately verified.
Clearly, &n important vpart of this software is the
superlinker, The output of the suyperlinker is source code
versions ot the kxernel tables, which are then compiledq,
linked, and bulilt into a total memory image. These Kernel
tables could be human=inspected, but this would be a very
difficult task, which itself would use many machine aids.
If there were any chance of having to 40 this tedious human
inspection repeatedly, verificstion of the superlinker would
be the proper thing to do instead,

The Kernel was developed in a context which emphasized the
production of working code in a relatively short time. For
this reason, it was decided neither to formally specify the
properties of the Kkernel, nor to attempt to formally
demonstrate anything about it. Some such effort may be made
in the future,

It is of course the case that code which was not developed
fronm formal specifications may be qguite difficult ¢to
formally verify after the fact, and will almost certainly
have to be modified in order to be verified, This may be
true because actual security flaws are found by the formal
analysis, or because some aspects of the existing code are
particularly unamenable to verification. However, there are
some aspects o0f the existing kxernel =~ the capability
orientation in particular = which we hope will ease formal
veritication.

3.0 Ine Environment of a Brocess

To begin with, we emphasize that a "process" is not part of
the kernel, but rather an "application” program for which
the Kernel provides environment and services, No part of
the kernel is described as a process.,

In a PDP 11734, the virtual address space of a process
comprises 64K bytes ~ each process produces 16=bit addresses

The SDC Communications Kernel August 1981

as it accesses memorve. These virtual addresses are
translated to physical addresses by the memory management
hardware, Thls hardware manages the process’ virtual memory
space 1In elght pleces, each of wnich centains 8K bytes.
These pieces are the "pages" of a process® virtuvual address
space,

These pages are used as follows:

a. 0Une page accesses the "library"'. This is a
collection of commonly useful subroutines, A
typical routine would be a routine for converting
between a machine clock, which might read {in
seconds past .January {, 1970, to human time (date
and time). The 1library is read~only to all
processes,

be 0One or more pages are used to access the oprocess’
text ... that i{s, its executable code. This access
is read=onive.

c. (One or more pages are used to access the process’
data area cas that 1s, the area in which
initialized variables are Kept. This area 1is
noermally read=-only, but may be made writeable, by
special instructions to the superiinker.

d. One or more pages are used to access the process’
so=called "bss" area ... that is, the area in which
variables which are initially zero are kept, This
area is read=write,

e, The last page (page seven) accesses the process’
"communications oblock"™, This is an area of memory
snared by the process and the Kernel and used for
communications between a process and the kernel.

f. The remaining pages (there are at most three) are
free to be used to "map iIn"™ blocks of data passed
from process to process using the interprocess
communications mechanisms described below. These
are referred to as mappable pages,

In an 11/70, the situation 1is similiar, except that an 11/7¢
has "“separate I and D space", and so has twice as many pages
for each process as the 11/34.

when an event occurs which affects a orocess, the kerne}l
posts a notification of the event in the process’
communications block, which the process looks at in the
course of its maln loop, which is described below. (Section

P-10

The SDC Communications Kernel Aygust 1981

4 discusses traps and interruptions in mofé detall,)

In tne SDC system, brogrammers write code which makes kernel
calls directly. There 1is no "emulator" to provide the
running process with an environment 1like that of sonme
familiar operating system. (This is in distinction to the
UCLA Data Secure UNIX system,) Since the programmer is
writing code to run in an environment which is unfamiliar to
him, we have taken the approach of providing a standard
top=level structure for every process. (This also makes
understanding a process written by another programmery
conslderably easier.)

This standard top=level structure is implemented by
providing each vroqrammer with the same "main" routine.
(Again: we emphasize that this M"main® is part of the
process, not part of the KXernel.) The entire code of a
process consists of subprocedures called from this highest
level procedure “"main®, (Iin particular, there are no
"interrupt handler" or “completion" routines which are
initiated directly by the kernel.,) The outline of main is as
follows: '

procedure main;
begin
initialize;
while (true) do
begin
Set "summaryv" flag in communications block to false.
while (some external event remains unprocessed) do
cegin
Call procedure to brocess that external event.
end; .
K.SLEEP:
end;
end;

The procedure "main® is caused to begin executing when the
system is booted. Main never exits.

The process begins by calling an initialization subroutine,
and then enters an infinite loop. This loop basically does
nothing except process external events. ("External" here
means external to the process.) The process detects that
there are external events to be processed by examining its
communications block. When there are no external events to
be processed, the process makes the system call K.SLEEP to
give up the CPU until some external event occurs. ®when an
external event does occur, the kernel awakens the process,
which resumes execution just as though the KJ.SLEEP call nad
returned immediately.

P-11

The SDC Communications Kernel August 1981

From the ordinary vrograrmer’s point of view, writing a
process to run under the SLC kernel consists in coding
various procedures which are called from main, thne
procedures which they in turn call, etc,.

The "summary" flag in the communications bplock is used |in
conjunction with the K_.SLEEP call to avolid a possible race
condition,

{If the summary flag were not used, the following might be
possible:

A process has processed all previously pending external
events, has decided that there is nothing more te do,
but has not vet made the K.SLEEP call. NOwW an external
gvent OCCUrSs. The kKernel posts & notification of the
event in the process® <c¢ommunication bplocke. However,
the process heas already decided to go to sleep, The
process now makes the K.SLLEP call, As far as the
kernel can see, the process has disposed of the new
event. Thus the process goes to sleep without nandling
the event, and might even sleep forever.,)

The summary flag avelas this race condition as follows: Any
time that the kernel posts an external event to a process,
it sets the summary flag in the process’ communications
block to P"true®, If the summary £1lag is true when the
K.SLEEP call is made, then the process is not put to sleep;
the K.SLEEP call returns immediately. It 1s easy to see
that this mechanism, and 1its usage as in "maln®™ above,
avoids the race condition.

4,0 Interzupts and Iraps

The kernel operates with all interrupts locked out (PDP=11
priority 7). Thus, if a device wishes to interrupt while
the xernel is executing, the interrupt will remain vpending
until the kernel exits and a process starts tc execute,
Then that process will be immediately interrupted.

Suppose that an interrupt occurs «while a process is
executing, The CPU will pe interrupted and the Kernel will
handle the interrupt. When the process resumes executing,
it will resume at exactly the place at which it was when the
interrupt took place. In this sense, the {interrupt is
transparent to the process.,

If the jinterrupt implies that some process should be

pP-12

The SDC Communications Kernel August 19181

notified of a certajin external event, then the kernel posts
a notification in the communications tlock of that process.
The process is awakened if it was previously asleep. If the
notified process happens also toc be the process that was
running w«hen the interrupt took place, then the process
finds out avbout the event when it returns to its "main®
routine and examines its communications block.

Thus a process runs without interruots visible to that
process. The only possible race conditions that mignt
affect a process are concerned with the reception of
notitications of external events. These problems are
handled by the summary £1ag and the provision of 8 standard
"main®”. Thus, a programmer can gproduce code for a process
without considerations of race conditions, critical areas,
etc. This 1s <clearly of great openefit in a security=
oriented system which is also productione-oriented.,

The only trap used in the system is the so=called HEMmTH®
trap, which is used by & process to make a kernel call. The
occurence of a trap while in kernel mode would indicate a
bug in the kernel code, In this case the kernel halts the
machine., A trap other than the EMT trap while a process is
running indicates & bug 1in the code of the process. The
kKernel handles this by causing the process Lo be reeentered
and restarted at a low virtual process address.

5.0 Ihe Capability Lis:t

The kernel maintains for each process 2 “capability 1list",
This 1is an array of records, called #ecapability slots¥, An
index into this array is called a “"capability index". A
capability slot, 1f not empty, contains a "capability®", A
capability names some "object® and describes an allowed
"access"™ to that object. Some examples:

a., A (statically defined) section of a disk is an
object., Reading and writing are the two important
accesses,

b. The central clock maintained by the kerneli is an
opject. The only access which may be given by a
capability to the c¢clock is the ability to set the
clock, (Any process is allowed to read the clock
witnout having an expllicit capability to do so.)

C. A block of memory 1is an object, Reading and:
writing are the two important accesses.

P-13

The SbC Communications Kernel August 198%

The capability *list for each process is maintained by the
kernel. Some capablilities are placed In the 1list by the
superlinker at the time that the CPU wemory 1image |is
prepared, while other capabilities are placed in or removed
from the list in response to kernel calls, The process gets
no access to its capability 1list, either read or write,

A capability serves not only to define what accesses a
process has to & given objecty 1t serves to actually
identify that object., For example, suppose that one process
communicates with another process via a "gueue", as
discussed further below, When enqueueing information to the
other process, the process names the queue by giving the
capability index to the capability which gives the process’
access to Its end of the queue,

As another example, suppose that a certain process is to be
allowed to set the system clock. The superlinker control
file will contain lines instructing the superlinker to set
into the process’ capabllity list a capability to set tne
clock., The superliinker control file, in the part describing
tne capabilities which the process is to have, wlll contain
a line such as

clock capabillity on 12

This specifies that the process is to have a capability to
set the system clock, located at index 12 in its capability
i1ist. Wnen the process makes the K. SET_TIME system call,
one of the parameters will be the number 12, In fact, the
call is

K.SET.TIME(12, new.time)

when this call is made, the kernel will check siot number 12
of the process’ capability 1list to see if it contain a
capability to set the clock, Since it does, the kernel will
do what the c¢all asks it to do, namely to set the clock.
Note that the kernel does not search the capability list of
the process for a capability allowing the process to do what
it nas asked to do.

If the process by mistake made the call
K SET.TIME(13,nev_time), the kernel will lock in slot number
13 of the process’ capability list. Since this slot does
not contain a capability to set the clock, the call will
fail. That is, the kernel will give the process a return
indicating that the call tailed bpecause of a "pad
capability" = that is, the capability at the Iindicated
capability index ¥was not what was reguired., Also, the clock
will not be set,

P-14

The 8SDC Communications Kernel August 1981

notice tpat although the process cannot either read or write
its «capability list, since that list is maintained entirely
by the kernel, the process mmust know what Is iIn each
capanility slot. Cepabilities are placed in the capability
list of a process eitner statically ov tne superlinker, like
the capatility to set the clock, or else as a result of
Kernel calls made by tne process, as in the case of getting
a4 data plock as descriped below, Thus the process can kKeep
track of the entries of its capapility list without in fact
being able to read it,

6,0 Iprtearnrocess Compunications

This section describes the major method of interprocess
communications under the SDC Kernel, namely the endgueueing
and dequeueing of bplocks. (Inere are other methods of
interprocess comnmunications which are not described here,)

The kernel maintains a pool 0f free memory bBlocCks. These
are blocks of 128 bytes of memory (in our current
implementations). The blocks are clear as kept in the free
pool. when one process wishes to send a message to another
process, the sequence of events is as follows:

a, The first process gets a block, and writes
information in it.

p. The first process places the block on a aueue to
the second process.

c. The second process takes the pblock off the gueue
and reads the information from it.

de The second process returns the block to the Kernel,
which clears it and puts it back in the free pool.

In more detail, the steps are as follows?

The first process makes a K_GETL.DATA.BLICK kernel call. An
argument - to this 1s a capability index. This must be the
index to a currently empty capabpility slot, The kernel will
remove a block €from the free pool and place a8 read-=write
capability to the block in the specified slot.

The process then makes a K.MAP call. This specifies the
capability index where the capability to the block is
located, and one of the process’ virtual pages, which must
be ynused. The Kernel in response sets the memory
management hardware to make the block appear at the

P-15

The SDC Communications Kernel August 1981

peginning of that page o0f the process”’ virtual address
space, giving the process read and. write access to the
block. This is called "mapping -the plock in".

The process can now read and write the block, using
references to a data structure which is forced to reside at
the appropriate location in the process’ virtual address
space.,

Now, this sequence of operatiorns is a natural pair: when a
process gets a data block, 1t will almost certainly want to
"map the block in®* to access it, Thus, these two calls can
be compined for greater efficency., Tnhis is in fact what nas
been done, That 1is, the K.GET.DATA block call nas
additional ©parameters which will allow the calling process
to map the block in as part of the call.

The process then makes a KLENQUEUE call. The parameters
here are the capability index naming the block, and thne
capability index naming the enqueue end of the gueue, {The
gueue 1is defined, and the capabilitv to the gqueue is given,
by the superlinker.) 1In response, the kernel TrTemoves the
capability to the block from the first process’ capapility
list, puts the block on the gqueue (which is maintained
entirely by the kernel), and unmaps the block, So that - -the
process ne¢ longer has access to it, It posts a notification
to the second process that the queue has something on it,
and wakes the second process if it is asleep.

The second process makes a K.DEQUEUE call. The parameters
here are a capability index to the dequeue end of the queue,
and a capapility index to an unused slot in its capability
list, The Kernel removes the block from the gqueue, and puts
a capapllity to that block in the specified slot. The
normal sequence of events is that a receiving process will
first degueue a block and then map it in, simitlar to thne
situation in the case of the K_GET.DATA_BLOCK <call.
Therefore the K.LDEQUEUE call has optional parameters by
wnhich the calling process asks tne kernel to map the
dequeued block in to a specified virtual page,

The second process can now read the data in the block,

The second process f£inally makes a K.RELEASELDATA_BLOCK
kernel call, specifying the capability index at which the
capability referring to the block is 1located. The Kkernel
removes the capability, unmaps the plock from the process”
virtual memory space, clears the block and returns it to the
free pool.

The apove description is one of the simplest of the

P-16

The SDC Communications Kernel August 1981

interprocess communications mechanisms provided by tne SDC
Kernel. One of the more Iinteresting variations is the
ability of the kernel to regulate write=access by a process
to the contents of a block on a basis of a finer granularity
than the whole block itself.

This facility might be useful if there were a process that
should bpe allowed to modify certain fields in a bleck, but
not other fields. It might be the case that some process
receives a block from another via a gqueue, and should be
allowed to modity a "header"™ field withnin the block, but no
other part of the plock.

This can be achieved in the SDC kernel as follows: Special
instructions are placed in the superlinker control file,
These instructions include a specitication (namely, a bite
mask) of which bytes of the blocks dequeued from a certain
gueue the process in guestion is to be aple to alter. The
superlinker then confiqgures the kernel's tables in a special
way. Now when the process dequeues a plock from the gqueue
in «guestion, the process gets a read=only capability to the
block., when the process uses the K.MAP call to "map the
block in", the kernel sets the hardware mapping registers so
that the process gets only read-access to the block. The
process sets the fields it is permitted to set by making a
KL.WRITELBLUCK call. The parameters to this c¢aill are the
capability index to the block, along with (the address of) a
buffer of 128 bytes in the process’ data space, The Kkernel
will then copy £from that buffer to the block those bytes
which are indicated by the bite-mask supplied to the
superlinker by the superlinker control file,

This kind of finew=granularity control must be implemented by
the kernel software, since the 11/70 memory management

hardware does not have the necessary capabilities.

7.0 Iipe

The kernel maintains a 48=-bit *"fast® clock which is
incremented every 10 microseconds, using the DEC KWii=P
clock device. This can be read by a process, using the
K.GET.TIME Kernel call,

The kernel also maintains for each process a "slow" clock.
Tnis i5 a counter in the process’ communications block which
is incremented every half-second, By setting variables in
its communications block, @& process can arrange for the
kernel to give it (the process) an "alarm®™ notification
after a specified number of half=second ticks,

P17

The SDC Communications Kernel August 1981

By using the slow clock and the associated alarm mechanism,
a process can implement any sort of facilities for
maintaining multiple named timers, as it chooses, HNote that
using the slow clock and the alarm mechanism do not reguire
system calls. The associated system overhead is thus guite
low,

The kernel allocates time among processes by time slicing at
cne=tenth second intervals.

8.0 Ipplementations and RBesults

The 8DC kernel has so far been implemented on the PDP 1i/70,
11734, 11723 andg 11703, (The 11723 and 11703
implementations are modifications: the 11/23 version allows
interrupts, while the 11/03 version is more properly viewed
as 38 kernel emulator,)

The code is written in a modified version of Pascal, as used
in the UCLA kernel, with small amounts o0f assembly language,

The 11/70 version of the code comprises approximately 2500
Pascal statements, including drivers for the DHI1, DLiL,
rRX01, RPOS5, TE16, and other devices, This becomes
approximately 30000 bytes ot instructions. {(Total kernel
size, inciuding all tables, is extremely dependent on the
system being configured: the number of processes, the sizes
of their capability lists, the number of queues, etc.)

The times required for some kernel calls is shown pelow,

P-18

The S8pC Communications Kernel August 1981

i1/7¢ 1£/34

KWwGET.TIME 0.B1 1.8 milliseconds
{Read fast clock.)

KaGETLDATALBLOCK 1.5 2.7 miliiseconds
{Get block and
map it in.)

KLENQUEUE 1.7 3.1 milliseconds
{Put block on

queue,}
KLDEQCUEUE 1.9 3.5 milliseconds

(Get block off
gqueue and nap
it in.)

KRELEASE_DATALBLOCK 2.0 4.4 milliseconds
{Clear block and
return to pool.)

The only one of these calls which has an equivalent 1in the
Unix system is the K.GET.TIME c¢all., The Unix "tipe®" system
call takes .31 milliseconds on the 11/70,. {31

wWe can use these numbers to get estimates of the pandwidth
of the engueue/dequeue interprocess communication path under
several assumptions.

First of all, consider the following situation:

| i i i i |
¥ A IELL T TS ¥ B |womeonad | C [
i | i f | i

L 2 X L % L A 2 A B b A X 4 LA X 2 2 B X X 4

Here, we.are supposing that the blocks are prepared by A,
processed by B, and consumed and released py C. The total
kernel call overhead assoclated with B receiving and
transmitting one 128=byte block is

R L R L A A & £ 2 1 X 4 2 2.4

[3] All times discussed below will be for the
11770, unliess specified otherwise.

P-19

' The $DC Communications Kernel Aygust 1981

time for K.DEQUEUE 1.9 ms
time for K.ENGUEUE 1.7 ms

W W

total 3.6 ms

This corresponds to a throughput of about 35K bytes per
second,

A second situation is the following:

| } i i
' A '-——---)‘ 3}]
i i H |

LA A X 2 2 2 2 T J L E L 2 % % 33

Here, we suppose that A gets a block, prepares a message,
and enqueues the block to B. & dequeues the message, reads
it, and then releases the block. The total kernal call time
per 1Z28=byte block here is '

time for K_GET.DATA.BLOCK 1.8 as
time for K.EsMYUEUE 1.7 ms
time for KL.DEQUEUE 1.9 ms

time for K.RELEASE.DATALBLOCK 2,0 ms

L X 2 X E 2 % 4

total 7.1 ms

Thnis corresponds to a throuqnbut of about 18K bytes per
second.

This calculation does not allow for the time necessary to
switch processes S0 as to allow A and B to both run, and
tnus may seem unduly optimistic. However, it 1is actually
quite realistic., when a system is heavily loaded, as is the
case of interest for throughput calculations, process A
would typically have a number of external events to process
wnen it wakes up. A will then process all of these events,
producing a number of blocks which it engueues to B, before
it (A) goes to sleep, letting B run, B then will process all
these input blocks at one scheduling, Thus the time
regquired to switcn from A to B is divided among tnis number
of blocks, and so does not greatly affect the throughput.

The time required to switch processes is, however, of some
interest, The experiment

P-20

The SDC Communications Kernel August 1981

L 2 A X 2 2 2. 2] Ll Al 2 X

| | i l
| A |ommme=>| B i
{ { | |

LA L A & R X & 2 2 LA B 2 8 2 A 3 2 J

was re=run in such & way as to force B to be scheduled every
time A sent one block. The following figure shows the times
used to send one block, Hote that both processes used the
standard "main®™; the test did not separate cut the time in
main from the time actually in the kernel,

Kmmmme process A - wwed Comann Process B L L TS
Enqueye Kernel Degueue
i i |
Get i Exit i Enter { Release
block i main { main { block
| { i i { i i
vV v v v v v Vv

{—'-ouco{—-'-.-u‘-h-n‘-n*---c-----—.i-n-—u--‘a--.n--‘---é---‘

< 1.5 >» £ 1’7 D Ewnawewmwn 10 wameawessnd 1.9 » £ 2.0 >

This shows a worst=~case time of 17 milliseconds for a 128~
byte plock, Thils corresponds to a throughput of 7.5K bytes
per second.

It should be remembered that these throughputs are based on
the use of 128=byte plocks, as in our current
implementations. The use 0f larger blocks would be a miner
cnange, and would result in proportionally 1larger
bandwidths, since kernel call times are independent of the
size of the block. [4] For example, if 256=byvte bDlocks were
used, the throughputs above would nearly double, giving
values of 70K, 36K, and 15K bytes per second.

In considering these speeds and throughputs, it should also
be polinted oput that the SDC Kernel, although it has been in
use for some time, has not been extensively worked over to
increase its speed, Effort in this area would undoubtedly
pay off.

{41 viith the exception of the K.RELEASE.DATALBLOCK
. call.

P-21

The SDC Communications Kernel August 1981

In c¢omparison, the throughput of a Unix pipe, on an
otherwise-idle 11/70, 1is about 25K bytes per second. This
is the rate when a sending process sends in unlts of 128

bytes. Increasing the send unit to 1280 bytes leaves the

throughput rate approximately unchanged.

9.0 denial Qf Seruice

The SDC kernel does neot attempt to deal with denialeof=
service threats., That is, @ malicious process could cause
CPU usefulness to be so degraded that tne CPU could perforn
no useful work. For example, a process could (potentially
but improbably) get and Kkeep a large number of blocks.
{This threat is somewhat limited: a process cannot get more
plocks than it has slots in its capapility list, This is a
per=process parameter in the superlinker control f£file,)

Facilities could pe added to the SDC kernel to address sone
denial=~cfeservice 1issuyes, put it should pbe pointed cut that
it is consistent with the objects of the SDC kernel not to
worry about denial=ofe-service issues. The reason is that
there are no “Yoptional" processes Iin a communications
processor of the Kind that the kernel was ceonstructed to
support. That is, the correct functioning of each process
is necessary for the system to provide correct service, 1f
any process is not performing its tasks correctly, service
will be denied, and the kernel cannot do anything about it,
However, security 1s preserved regardless of service
genials.

10.0 Lurrent Status

The 8DC kernel was coded several years ago. It is currently
operational for the Department of Defense on a nunmber of
CPUs functioning as special communications controllers and
network front ends tor ARPANET-likxe packet network terminal
and host interfaces. Uur experlepce so far shows that the
resulting system provides throughput which is competitive
with otnher systems not using & Kernelizeg architecture,

P-22

The SDC Communications Kernel : August 1981

11,0 References
Kampe, M., et al. The UCLA Data Secure Operating Systenm.
TeCh. Rep.., {jCLA’ JU}.Y 1977.
Popek,G., and Farber, D. & Model for Verification of Data
Security in Operating Systems, Comm, ACHM, 21 9 (Sept 1978)
737«749. (Contains other pertinant references.)

¥alton, E. The UCLA Kernele. master’s Th.,, Comptr,., Sci.
Dept., UCLA, 1975,

P-23

