
-

Memorandum

Date:

From:

To:

Subject:

Pages:

December 13, 1994

Karl Auerbach

LAN Magazine

Article - Tips for diagnosing and repairing TCP/IP networks

8

Tips for Diagnosing and Repairing TCP/IP networks.

Introduct ion

Almost everyone, is rushing to get onto "the Internet". Many people are experiencing TCP/IP
for the first time.

TCP/IP networks can be rather complicated and can demonstrate some "interesting" failure
syndromes. The purpose of this article is to give you, the reader, a rough framework to use
when dealing with TCP/IP problems.

The Strategy

The most effective approach is the familiar "scientific method" combined with a "divide and
conquer" strategy. Use your knowledge of the symptoms and your knowledge of how
networks operate to formulate hypotheses. Perform tests to confirm which hypotheses may be
valid and which are clearly incorrect. Start by making broad hypothesis and then, with each
round of the scientific method, begin to slowly "zero in." For example, I would begin with a
broad hypothesis, such as "the problem is network connectivity rather than the user's
computer." Then I'd perform tests to determine whether the network does, in fact, exhibit a
connectivity problem. If so, I might then refine the hypothesis to say something like "the
problem is a routing failure".

Success is not guaranteed. However, by using this methodology your chance of success is
vastly higher than an unfocused hit-and-miss strategy.

Networks are extremely complex distributed systems with much non-deterministic behavior. It
is very easy to make a mistake or miss something when trying to isolate a problem. So if your
initial attempt to solve a given problem leads nowhere, take a break and start anew but be



December 13, 1994

more careful about your hypothesis definition and the tests you perform. Be careful not to
read too much into any single test and be careful not to prematurely discard a hypothesis. And
if things don't seem to be getting anywhere, be willing to re-evaluate your previous
conclusions.

The main difficulty of this approach is coming up with a reasonable hypothesis -- the actual
testing is easy by comparison. A secondary difficulty is analyzing your tests to determine
whether you can really reject or accept a hypothesis.

Think: "What could be causing the symptoms that I am seeing?" This, of course, means that
you know what are symptoms and what are simply irrelevant observations. It also means that
you have a good feel for how the various elements of a network interact with one another,
especially how those interactions go awry when things are not quite in perfect order.

Experience will help. And so will the framework which follows. This framework has been
acquired through long (and painful) experience dealing with both healthy and sick networks.

Begin by formulating a hypothesis which tries to determine the general nature or location of the
problem. For example begin by trying to determine whether a problem is associated with a
given computer or with the network as whole.

Troubleshooting Aphorisms

Most hypothesis-test cycles are mental and don't even involve the network or physical testing
at all.

Keep good notes. It can be very frustrating to think you have determined some fact when you
have not.

Readily repeatable problems, or total outages are the easiest problems to resolve.

Intermittent problems requires special attention - much of your work is going to be an attempt
to find ways to cause the problem to occur. Sometimes you may simply have to watch the net
for long period and just wait.

Performance problems are often as hard to find as intermittent problems.

You will need at least a working knowledge of how networks work - you can't really fix
something unless you know its parts and how they interoperate.

Recognize the special characteristics of various network media. Ethernet comes in at least four
distinct flavors (thick net, thin-net/cheapernet, 10-Base-T, and optical). Each of these has its
own special failure modes. Switching and "secure" hubs have their own, sometimes devious,
personalities.

Be sure you understand the topology of your network - you will need to know what is
connected to what, and know the device identity (e.g. the type of machine, its software, etc.) of
each unit connected to the network.

Page 2 of 8



December 13, 1994

You should almost always have a good notion what the results of any test should be before
you run the test. In other words, you should how a test will come out on a well behaved
network.

Don't assume that things are configured correctly -- most errors or problems are caused by
user/pilot error. (Routing problems are the second most common kind of problem on TCP/IP
networks.)

Don't make the mistake of assuming that your test equipment is running. It's almost always
useful to make sure that your tools give you the results you expect when you attach to a
working network.

Doing it

The following is a rough sequence of steps that I tend to follow when troubleshooting a TCP/IP
problem. This framework should not be followed slavishly, rather it should be bent to
accommodate the reality of the moment.

Gather evidence from the users.

Use users as your first line of testing -- make sure you understand their configuration and
software base. However, don't necessarily believe what users tell you -- they are not trained
observers, nor do they necessarily use words the same way that you do.
Good questions to ask are:

"When was the last time you got something off the network?"

"Are you experiencing a partial failure, or a total communications outage?"

"Can you recreate the situation in which the problem occurs?"

If at all possible, go to the user's location and try it out yourself. (However, as will be
mentioned below, immediately rushing off to the user's location is not always the best first
step.)

Unless smoke is pouring out of the diskette slot, tell the user to leave his/her computer
running.

Finding a good place to start.
You are going to need to run tests from somewhere. If you are like me, you might be tempted
to run over to where the user happens to be and start there. It's a temptation to be resisted.
Rather, do as much as possible from your current location. You will have plenty of time later to
run up stairwells, wait for elevators, brave city traffic, or drive to the "burbs".
With TCP/IP networks there are many problems where you do not need to be "on-site".

Page 3 of 8



December 13, 1994

On the other hand, if you happen to be relatively close to one of the computers that the user is
having trouble reaching, you might want to start there because it is right on the mainline path
that is affecting the user.

Is t h e r e t r a ffic?

Can you see traffic on the network? If not then perhaps there is something larger going on.

The easiest tools to see whether there is traffic are LEDs on hubs, network adapter cards,
MAUs, and other devices of that nature. A packet monitor is also useful for this purpose, and
will give you the additional bit of information whether the network is carrying the traffic you
expect.

By "seeing" traffic, I don't necessarily mean that there is traffic on your LAN segment. Rather, I
mean traffic anywhere in the network. For example, it is often useful to use SNMP to read
interface counters from routes attached to the complaining user's LAN to see whether the
routers are seeing any traffic.

You will want to see whether the user's computer is emitting packets when one would expect it
to do so. LEDs are really useful here. If it isn't then there's probably a software or hardware
problem inside the user's box.

Is there a there there? (Apologies to Gertrude Stein.)

TCP/IP networks often depend on logical names for devices. These are usually "domain
names" from the Domain Name System (DNS). (The exception is when you are using
something called "NIS".)

In many cases TCP/P connectivity failures are caused not because of any problem in the
mainline communications infrastructure. Rather, a computer's logical name may simply not be
present in the naming databases.

You want to be sure that the target machine that the user is trying to reach is correctly listed in
the naming system used by the user's machine. This means that you have to find out what
mechanism the user's machine is using.

Many small networks depend on "host files" rather than the Domain Name System. Host files
are simple text files which contain the pairings between host names and IP addresses. It's
important that these files be consistent with one another. Otherwise you may find some users'
computers working fine, others saying that a name can not be resolved, and others finding
themselves being connected to the wrong resources.

So, one of the things you want to do early in your hunt is to see whether the both user's
computer and the target that the user is trying to reach are both properly visible in the various
name systems active on your network.

Exotic problems can arise if the Domain Name Servers are incomplete or inconsistent with one
another or with people's host files. Many FTP servers, for example, refuse anonymous service
unless the caller is completely and perfectly wired-in to the DNS system, including a reverse
IP-address to host-name mapping (through the somewhat arcane "in-addr.arpa" domain.)

Page 4 of 8



December 13, 1994

The best tools to find out what DNS is saying are either "nslookup", "dig", or "host". Except for
the version found on FTP Software's PC/TCP and OnNet products, these tools are mainly
found on Unix systems. None of these tools are particularly easy to use to their fullest extent
unless you have a good understanding how the DNS servers interact with one another and
how the various types of DNS records work. But in the TCP/IP world, this is an important skill.

(Recently l've started to see a number of reports of intermittent name lookup problems from
people using World Wide Web browsers [such as those from Netscape or Spry.] I've often
found these not to be really name lookup problems at all. Rather people were using PPP or
SLIP dial-up links and the links were dropping.)

Can you get from "here" to "there" and back again?

The basic job of any network is to get packets from one place to another. In particular, you
want to be able to make sure that packets from the user's computer are reaching the intended
destination. And, what many people forget, you also need to ensure that packets from the
intended destination are, in fact, making it back to the user's computer.

The tools to do this are "ping" and "traceroute".

You want to use ping to bounce a packet off of the target computer. And traceroute tells you
the paths) that your packets are taking and, if they are failing to make it, where they seem to
be being lost.

Ping and traceroute are really incredibly useful tools. With neither muss nor fuss, ping tests
basic connectivity, while traceroute can tell you everything from the sequence of routers
traversed to the portion of overall transit latency added by each router-to-router hop. One
thing which traceroute will show you that few other tools can are "black holes" or routing loops.
These are places where two or more routers are each referring to one another as a better
path. Once a packet enters, it probably will never come out.

To use these tools, you need to be somewhat close (in a network topology sense) to where the
user or server lies. This is where I find a small 10-Base-T hub to be a handy tool -- I
disconnect the user's computer from the net, attach the hub in the user's place, and then plug
both the user's machine and my test gear into the hub.

You might also want to try to start from the target computer and bounce some packets off of
the user's computer. The trouble with this, however, is that some of the TCP/IP packages for
PC's are, euphemistically speaking, seriously "TCP/IP challenged" and either do not respond
to ping requests or do not do so unless in a receptive state. This is particularly true of TCP/IP
stacks which depend on DLL's rather than VxDs or TSRs.

Unfortunately, few of the popular commercial TCP/IP stacks have a traceroute applications,
and I have yet to find one that is correctly implemented. And many Windows Sockets
(WinSock) implementations are inadequate to support either ping or traceroute.

Assuming that you can not get data across the network, the first thing to look at is whether the
user's packets are being properly routed.

The best way to handle this is first to ping a computer which is on the same LAN segment as

Page 5 of 8



December 13, 1994

the user's machine. If this does not work, take a very close look at the configuration of the
user's machine, especially its IP address and subnet mask.

If local machines can be pinged, then see if you can ping the local router's near side interface.
You're probably asking "near side interface"? What's that? In the TCP/IP world, IP addresses
are not associated with computers, but rather with their interfaces to the network. A router will
almost certainly have a different IP address on each of its ports. The "near side interface" is
the one on the router which is attached to your LAN segment. You might have to ask your
network administrator for this address, or you might get it from a machine which is properly
working, or you might simply monitor the various forms of IP routing traffic.
Once you know that you can ping the nearest router, you need to see whether the user's
computer is, in fact, configured to use that router to handle off-subnet traffic. Take a very
close look at the user's IP address, subnet mask, and "default router" setting, if any. If there is
no default router set, make sure that the user's machine is listening for routing protocols
(usually the Routing Information Protocol, or RIP for short) and also check that the router is
emitting RIP.

Sometimes user machines use a protocol called "Router Discovery Protocol" or RDP to locate
routers, but relatively few sites are using it yet.

Is there noise or selective data loss?

TCP/IP can be reasonably insensitive to noise and variations in network transit delays. Some
implementations are better than others. Nevertheless, there are times when the noise on a
link is simply too much to bear.

The easiest way to test noise is to send a few dozen pings back and forth. You should not
lose more than a small percentage.

Toolkit

What sort of tools do you need to troubleshoot TCP/IP networks? There are many, many
tools. In fact there is an entire catalogue of such tools available: RFC 1470 "FYI on a Network
Management Tool Catalog, Tools for Monitoring and Debugging TCP/IP Internets and
Interconnected Devices"

Here's some of the general kinds of tools you are going to need

• Ping - "Ping" is almost the ultimate network test tool. "Ping" simply sends an echo
request packet to another computer on the network and that other computer (hopefully)
answers. You want a really flexible ping implementation, however, that is able to
control the rate and size of echo request packets.

• Traceroute -- Close on the heels of "ping" is "traceroute". This tool is used to create a
map of the path your packets take as they move from wherever you are to wherever
you are trying to reach. Although the output of traceroute can be somewhat difficult to
interpret at times, it is an absolutely essential tool.

Page 6 of 8



December 13, 1994

Packet monitor - You will want a way to view and decode the packets flowing on your
network. There are a large number of so-called "protocol analyzers" which can do the
job. These include the Network General Sniffer, FTP Software's LANwatch, or the
freely available tepdump.

For Domain Name System probing the tool you need will be named either "nslookup",
"dig" or "host". Unfortunately, these are rare on non-Unix systems.

• You will want a simple SNMP MIB browser. You do not want a full SNMP management
station.

Unless you have a herd of elephants handy to carry various workstations and have a budget to
match and the patience to reconfigure them whenever you set-up a troubleshooting listening
post, you are going to have to be somewhat selective about which tools you actually use on
any particular occasion.

Whenever I've set forth on a troubleshooting adventure, l've tried to treat it like a backpacking
trip -- take only the most flexible and lightweight tools. Among the tools I would take, if I had
the opportunity, are the following:

• A notebook PC equipped with a good strong battery, a PCMCIA Ethernet card (i.e. one
that is able to handle promiscuous mode) and the following software:

• FTP Software's LANWatch, Network General's Sniffer, or any other good packet
monitor.

• An all-in-one package such as Empirical Tools and Technologies' Dr. Watson, the
Network Detective's Assistant. (I'm somewhat biased in favor of this product; the
concept and form were developed during my years at Epilogue Technology
Corporation. I reduced a portion of these ideas to software at Empirical. LAN
Magazine awarded it the 1994 Product of the Year for troubleshooting.)

• A TCP/P stack with a rich set of applications. I use FTP Software's PC/TCP,
OnNet package for this. It has a fairly nice set of testing applications (such as the
previously mentioned "host" program) in addition to the basic "telnet" and "ftp"
functions found in other TCP/IP packages. And sometimes it is extremely valuable
to perform a "telnet" into a non-standard TCP port. There are some other TCP/IP
stacks which I would not recommend for troubleshooting because they are lacking
in basic functions such as IP address to hostname lookup capabilities.

• Simple SNMP MIB browser.

• A combination protocol and cable test device such as a Fluke Model 675 Lanmeter.

• A small toolpouch with small screwdrivers, wirestripper, a small flashlight, cable ties,
marking pen, pencil and paper.

• A handful of adapter hardware and cables -- a small 10-Base-T hub, RJ45 barrel
connectors, 10-Base-T patch and "null modem" cables, 10-Base-T/AUI MAU,
terminators, tees, etc.

Page 7 of 8


